Hvordan fungerer egentlig en solcelle, del III: PN-overgangen
Da er vi kommet til del tre av denne serien om hvordan solceller egentlig fungerer. Vi husker fra
første del av denne serien at solceller baserer seg på at fotoner absorberes i et materiale, og at den absorberte energien fører til at det dannes det vi kalte et elektron-hull-par. Vi husker videre at en av utfordringene i å konstruere en solcelle er å sørge for at man kan utnytte dette elektron-hull-paret til noe, før det rekombinerer. Til dette formålet kan man benytte det som kalles en pn-overgang, og det er dagens tema.
Vi husker fra
forrige del av denne serien at det å tilsette atomer av et annet grunnstoff i en ellers helt ren halvleder kalles å dope halvlederen, og at det finnes to måter å dope halvledere på, avhengig av om man tilsetter et grunnstoff som har flere eller færre elektroner i ytterste skall enn halvlederen selv. Hvis man doper silisium, som har fire elektroner i ytterste skall, med et grunnstoff med fem elektroner, får man det som kalles en n-type halvleder, som har frie elektroner som kan lede strøm. Tilsetter man et grunnstoff med tre elektroner får man en p-type halvleder, som kan sies å lede positivt ladede «hull».
Til venstre en n-type halvleder, med faste positive ladninger og mobile elektroner, til høyre en p-type med faste negative ladninger og mobile hull.
Som navnet antyder er en pn-overgang en overgang mellom en p-type og en n-type halvleder. Det som skjer når man setter sammen to slike materialer er at elektroner fra n-type halvlederen vil bevege seg et stykke inn i p-type halvlederen, og motsatt, og elektroner og hull vil møtes og utligne hverandre i et område nær overgangen. Resultatet blir at vi får et område som er fritt for mobile ladninger, men der det sitter igjen faste positive ladninger på den ene siden, og faste negative ladninger på den andre siden. Vi får dermed et positivt ladet område, og et negativt ladet område.
Når man setter sammen et materiale av p-type og et materiale av n-type, vil de mobile ladningen nær overgangen utligne hverandre, og det dannes områder med faste ladninger.
Det positive og det negative området som blir dannet nær overgangen utgjør tilsammen det som kalles romladningsområdet, fordi det har ladninger som ikke kan bevege seg i rommet. Grunnen til at dette er nyttig for solceller er at hvis et foton blir absorbert, og et elektron-hull-par blir dannet i romladningsområdet, vil de faste ladningene trekke elektronet og hullet i forskjellige retninger, slik at de ikke kan møtes og rekombinere. Konsekvensen av alt dette er at når man plasserer en halvleder med en pn-overgang i sollys vil det hope seg opp med elektroner på den ene siden, og hull på den andre siden, og da begynner vi å snakke ost. Da er det nemlig bare å koble på en ledning fra den ene siden til den andre, så vil elektroner gå fra den negative siden, gjennom ledningen, og utligne hullene på den andre siden, akkurat som i et batteri.
De faste ladningene vil bidra til å skille elektron-hull-par som dannes før de rekker å rekombinere.
Neste gang: Tekniske detaljer.
-Tor Nordam
Comments